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Abstracr-Long-baseline space interferometers involving 
formation flying of multiple spacecraft hold great promise as 
future space missions for high-resolution imagery. The major 
challenge of obtaining high-quality interferometric 
synthesized images from long-baseline space interferometers 
is to control these spacecraft and their optics payloads in the 
specified configuration accurately. In this paper, we describe 
our effort toward fine control of long-baseline space 
interferometers without resorting to additional sensing 
equipment. We present an estimation procedure that 
effectively extracts relative x/y  translational exit pupil 
aperture deviations from the raw interferometric image with 
small estimation errors. 

I. INTRODUCTION 

PACE-BASED telescopes such as the Hubble Space S Telescope have the advantage of avoiding atmospheric 
aberrations affecting ground-based telescopes. In general, a 
telescope with a larger aperture achieves finer angular 
resolution. The Hubble Space Telescope represents the 
largest fmancially feasible monolithic space telescope. 
Without resorting to one large expensive monolithic mirror, 
the James Webb Space Telescope [l], scheduled to be 
launched in 2011, has a larger aperture by using deployed 
segmented mirrors. To deliver even larger apertures for 
high-resolution imagery, long-baseline space 
interferometers are under extensive study. A long-baseline 
space interferometer consists of several spacecraft 
(including collectors, beam combiner or detector) 
formation-flying in a specified geometric configuration. A 
major challenge of obtaining high-quality interferometric 
synthesized images h m  long-baseline - space 
interferometers is to control these spacecraft and their 
optics payloads in the specified configuration accurately. 

In this paper, we describe our effort toward fine control 
of long-baseline space interferometers without resorting to 
additional sensing equipment. Here, the Stellar Imager (SI) 
[2] space interferometer mission concept is selected as the 
basis for algorithm evaluation. 
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The SI is a Fizeau-type interferometer composed of 9 to 
30 1-m-class spherical articulated mirrors on formation- 
flying satellites (“mirrorsats”) and a central hub with focal- 
plane instrumentation, as depicted in Fig. 1.  The objective 
of the SI mission is to obtain information on dynamo 
patterns for stars with Sun-like activity. The imager will 
operate at the UV/optical frequency range with angular 
resolution of 60 and 120 p-arcsec at 1550 A and 2800 A, 
respectively. Its focal-plane resolution is expected to be on 
the order of 1000 total pixels (33x33) over the surface of 
nearbv dwarf stars. 

Fig. 1. The Stellar huger Space htcrferomctcr Mir*on Concept 

In order to achieve high-quality images with the SI 
mission, the position and orientation of the articulated 
mirrors need to be aligned precisely on the larger (0.5-lan 
diameter) virtual mirror surface to keep optical beams in 
phase. Each mirrorsat comes with 5 degrees of h e d o m  of 
movement (tip, tilt, piston, as well as 2-D translations). The 
objective of our study is to control these mirrorsats using 
direct interferometer outputs. Fig. 2 shows the overall 
control concept. Deviations of these mirrorsats, x ,  from 
the desired mirror surface are estimated h m  direct 
interferometer outputs including the raw image collected at 
the central hub and other measurements h m  metrology 
sensors. The Optical System Master Control driven by 
estimated deviations and measurements from the metrology 
instrumentation issues commands to the optical system 
components on the spacecrafi, as well as feeds back data to 
the Spacecraft Formation Flying Control. The Spacecraft 



Formation Flying Control in turn issues commands to 
control the collection of spacecraft. Data from the optical 
system on each spacecraft is also fed back to the Optical 
System Master Control to initiate coarse control when the 
fine control via estimated deviations i is not adequate. To 
control these mirrorsats in great precision, the fvst step is 
to obtain accurate estimates of mirrorsats deviations. In this 
paper, we would like to present our results of estimating the 
2-D translation deviations of these mirrorsats using direct 
interferometric images. 

e 

Fig. 2. Control Concept Block Diagram 

II. PROBLEM FORMULATION 

A.  “Mirrorsat” Deviation and Interferometric Image 
To infer deviations of these mirrorsats based on raw 

images, the relationship between the geometric 
configuration of these mirrors and the observed image is 
depicted in Fig. 3. It is assumed that these spherical 
mirrorsats are configured and controlled under a predefined 
control coordinate system. Each mirror has 5 degrees of 
fieedom: x, y, z translation, and tip, tilt rotation. Geometric 
deviations of the mirrors are mapped into aperture 
deviations at the entrance pupil through a coordinate 
transformation. Under the assumption that there is perfect 
beam combination of the collected light beams from all 
mirrors, the aperture configuration at the exit pupil would 
be a scaled version of the one at the entrance pupil [3]. This 
implies that geometric deviations of these spherical 
mirrorsats can also be obtained from deviations of 
apertures at the exit pupil via a coordinate transformation. 
Deviations of the apertures include x, y, piston 
translational, and tip, tilt rotational errors. They are 
expressed by the wavefront error coordinate system [4], in 
which the piston variable points towards the focal point of 
the optical system. 

In the image domain, the properties of the optical system 
can be described by a point spread b c t i o n  (PSF). The PSF 
is related to the phase at these exit pupil apertures through a 
Fourier transform [4]. More precisely, a PSF can be derived 

as the magnitude-squared of the Fourier transform of a 
complex pupil function Ae’. Deviations of exit pupil 
apertures are then shown as distortions from the ideal PSF. 
In addition to the PSF, the modulation transfer function 
(MTF) defined as the magnitude of the Fourier Transform 
of the PSF is used to evaluate properties of the optical 
system. Since the definition of the control coordinate of SI 
is not yet complete, we have focused on estimating the exit 
pupil aperture deviations from the interferometric raw 
image resulting from the PSF convolved with the target 
source. In addition, since the estimation is based on the raw 
image, deviations of “mirrorsats” are assumed to be small 
enough to provide reasonably focused images. 
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Fig. 3. Optical System Modeling Showing Relationship Between 
“Mirrorsat“ Deviation and Interferometric Output Image 

B. MTF and Baselines 
To position mirrorsats correctly, the baseline of each 

mirrorsat pair, defined as the separation of the pair’s center 
locations at the exit pupil plane, needs to be maintained. It 
turns out that one can extract the baseline information from 
the MTF. 

fwo Mirrors One Mirror 

Fig. 4. PSF and MTF of a 2-Element Interferometer 

A simple 2-element inteflerometer illustrates the 
relationship between the MTF and the baseline. Fig. 4 



illustrates the PSF and MTF of a 2-element interferometer 
[5]. The 2-mirror PSF is a 1-mirror PSF modulated with 
iiinges. The 1-mirror PSF is essentially the diffraction 
pattern of a single mirror. Assume that the size of the 
mirror is much smaller than the baseline of the 
interferometer, so that there are multiple fiinge cycles 
within the 1-mirror PSF envelope. In the kquency 
domain, the MTF will consist of three distinct modes, 
which are observed as three dots in a pseudo-color 
depiction of the function. The base-band dot corresponds to 
the 1-mirror h4TF and the other two are just translated 
versions of the 1-mirror MTF due to fiinge modulation. 

Fig. 5. MTF of Golay-7 Contigmrrtion 

A Golay configuration, which is considered by the SI 
mission, is an aperture configuration for sparse 
interferometric arrays optimized to minimize redundant 
baselines. Fig. 5 shows the MTF of a Golay-7 
configuration [6]. The simulated configuration consists of 7 
circular apertures with diameter equal to 0.0125 meter. The 
shortest baseline is 0.0254 m, which is about twice the 
diameter of each aperture. These baselines are large enough 
that the MTF dots are visibly separable. Since the spatial 
Grequency of the iiinges is related to the size and the 
direction of the baseline, the positions of these MTF dots 
contain information on the size and orientation of the 
baselines. Moreover, it is observed that the piston errors 
and the tip, tilt errors alter the shapes of the MTF dots, but 
they do not seem to affect the locations of their "centroids." 
Hence, under the assumption that baselines are much larger 
than the diameter of individual mirrors, baseline deviations 
can be estimated fiom the centroid deviations of the MTF 
dots. For a non-redundant constellation such as the Golay 
configuration, the estimated baseline information can be 
used to estimate aperture deviations. 

C. Baselines and Translational Deviations 
In fact, the baseline error is a linear transformation of the 

d y  translational deviation. Let us define the baseline 
pattern b, for the mirror #i as the collection of the MTF 
dots corresponding to all the baselines connected to the 
mirror #i. For example, Fig. 6 shows baseline pattern of 
the Golay-7 configuration as red dots for individual 

mirrors. Hone numbers all positive h4TF dots in sequence, 
the baseline pattern 5;; can be denoted as a column vector, 

suchas [l 0 1 ... 0 l r ,  where 1's indicateallh4TF 
dots corresponding to baselines connected to the mirror #i. 
Assuming that there are N mirrors and therefore 
M = N . (N - 1)/2 baselines, the relationship between the 
baseline error and the x/y translational deviation can be 
written as 

[b, ... b,, - i'l;[ y] o r A - X = Y .  (1) 

&N &L 
X represents the translational error in the exit pupil plane 
either along the x axis or the y axis. Similarly, Y represents 
the baseline error either along the x axis or the y axis. Since 
the MTF only retains the baseline information, matrix A has 
rank N - I .  That is, only N-I independent variables can be 
recovered. One can reduce the number of independent 
variables by selecting a mirror as the reference mirror and 
estimate the relative deviations of other q & ! e s  with 
respect to the reference mirror. That is, 

where A' is a well-conditioned matrix of rank N - 1, and 
the relative aperture deviations can be obtained by the 
following equation. 

[xx2 ... xNp = ( A ' ~ A ' ) - I  . A"Y (3) 

Fig. 6. Baseline Patterns of Individual Mirrors 

In summary, the centroid of an h4TF dot is a prominent 
feature that has the potential to be used for determining the 
relative deviation of the center of the aperture on the exit 
pupil plane. However, with the only available raw image 



whose Fourier Transform is a noisy version of the true 
MTF, a robust centroid estimation algorithm is needed. The 
following section describes the overall estimation 
procedure that we developed for extracting relative x/y 
translational aperture deviations from the raw 
interferometric image. 

III. ESTIMATION PROCEDURE 
An effective estimation procedure using a k-means 

clustering [7] technique and least-squares ellipse fitting [SI, 
[9] is developed. The objective of the estimation is to 
calculate x/y translational deviations of exit pupil apertures 
so that every baseline is precisely maintained. Once every 
baseline is controlled at the predefined location, the PSF is 
known and the target image can be inverse-filtered from the 
measured raw image if there are no other deviations. 
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Fig. 7. Estimation Procedure 

Fig. 7 depicts the flowchart of the estimation procedure. 
First, the Fourier Transform of the raw image is taken to 
approximate the MTF of the interferometric system. The 
DC portion of the approximated MTF is removed to 
amplify the MTF dots containing the baseline information. 
Second, thresholding is performed to convert the resulting 
image into a binary image. The thresholding value is 
selected by the criterion that 90% of the total energy is 
preserved. The next step of the estimation is to calculate the 
x/y translational deviations of the baselines from the 
thresholded binary image. Locations of the baselines are 
estimated as center locations of the MTF dots. Three 
different methods have been tried to estimate the MTF 
centers: k-means clustering, direct least-squares ellipse 
fitting and weighted least-squares ellipse fitting. Initialized 
with the desired baseline locations, k-means clustering 
estimates the centers of the MTF dots h m  binary image 
data points. One can further refine the center estimation of 
each MTF dot by the direct least-squares ellipse fitting or 
the weighted least-squares ellipse fitting method. 
Segmented boundary points belonging to different MTF 

dots are obtained via the boundary extraction and k-means 
clustering. Using these segmented data points, ellipse 
fitting methods calculate the center of each MTF dot. The 
weighted least-squares ellipse fitting is a variation of the 
least-squares ellipse fitting, where each data point is 
weighted according to its MTF magnitude. Finally, with 
one aperture selected as the reference, deviations of other 
apertures can be obtained from deviations of baselines 
through a linear transformation as shown in (3). 

W.  RESULTS AND DISCUSSIONS 

To illustrate the effectiveness of the proposed estimation 
procedure, we would like to walk through an example of 
extracting the relative x/y translational exit pupil aperture 
deviations from a realistic simulated interferometric raw 
image. 

Fig. 8. Simulated DC-Blocked Interferometric Image of Sun Source in 
Frequency Domain 

Fig. 9. Binary Image of Fourier Transform of the Raw Image 

The raw image was simulated by convolving a model 
image of the Sun in the light of CIV atoms (1550 8, 
transitions) with the point spread function generated using 
the Golay-7 configuration. The Sun image is reduced to the 
size of 30x30 pixels using Wavelet transform [IO]. Fig. 8 
shows the simulated raw image in the frequency domain 
with the base band removed. Fig. 9 shows the binary image 
after thresholding. Fig. 10 shows the extracted boundaries 
of this binary image. Fig. 11 shows the segmented 
boundary points after the application of k-means clustering. 
Every boundary point depicted by a different color is 
segmented to belong to a certain MTF dot. The estimated 



center (x) and desired center locations (0) are also shown. 
Fig. 12 shows the baseline estimation result and Fig. 13 
shows the estimation results of aperture locations with 
aperture #1 as the reference. 

MethodSource Type Extended Source 
k - M m  Clustering 1.436 

Weighted Ellipse Fitting 1.363 
Least-Squares Ellipse Fitting 1.390 

also overlapped on the plots. In this case, weighted least- 
squares ellipse fitting appears to be the most robust method 
to estimate baseline centers. Table 1 summarizes the 
average baseline estimation error of 100 runs for both the 
extended source and the point source. It shows that the 
extended source affects the estimation accuracy 
substantially. 

Point Source 
0.0223 
0.0342 
0.055 1 

F i  13. Estimated Locations of Exit Pupil Apcrtnm 
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Fig. 12. Estimated Baseline Locations 

To test the robustness of the proposed estimation 
procedure, Fig. 14 depicts basehe estimation errors of 100 
runs. Errors have been normalized in terms of pixels, 
where each pixel is equivalent to 0.0002976 m. The Sun 
image with the size of 30x30 pixels is used as the extended 
source. Center locations of the exit pupil apertures are 
randomly deviated h m  the desired Golay-7 configuration 
with standard deviation of 0.001 m. The upper plot in Fig. 

Fig. 14. Average Baseline Estimation Errors 

Table 1. Average Baseline Eslimation Error with Lacation Deviations 

.. - - 

14 shows the average magnitude of the baseline estimation 
error for each run. The bottom shows the maximum 
magnitude of the baseline estimation error for each run. 
The average magnitudes of the simulated deviations are 

Fig. 15. Average Baseline Estimation Errors w.r.t Image Size 

We have also evaluated the performance of the proposed 
to different image estimation procedure with 



sources and image sizes. Fig. 15 shows the average 
baseline estimation errors with respect to different image 
sizes. The x-axis represents the one-dimensional image size 
in pixels. All test images are square images. The average 
baseline estimation errors are averaged across simulated 
images of the Sun representing 100 sequential rotational 
phases. The original simulated Sun images have the size of 
120x 120 pixels. Wavelet decomposition and reconstruction 
are performed to obtain test images with reduced sizes. The 
performance of the estimation would improve if the 
frequency response of the extended source is closer to that 
of the point source. However, a smaller extended source 
does not readily imply a flatter frequency response. 

To confirm our observation that piston errors and x-tilt 
errors alter the shapes of the MTF dots without affecting 
their “centroids,” we investigated the impact of piston and 
x-tilt deviations upon the baseline estimation errors. 
Several snapshots of the Sun image sequence are randomly 
selected to run the following experiments. There is no x/y 
translation deviation in this case. The Golay-7 
configuration is used to layout the desired locations of the 
exit-pupil apertures. The standard deviation of the piston 
error ranges from 0.27~ to K. The standard deviation of the 
x-tilt deviation ranges from 10h/D to 30 h/D. In our 
experiments, the average baseline estimation errors for each 
image source do not change with respect to the piston and 
x-tilt deviations at all. 

Fig. 16. One Control Example Using k-means Clustering 

Fig. 16 shows one control example of using k-means 
clustering method to estimate the translation deviations. 
Here, we assume that we have perfect actuators which can 
move the mirrors precisely. The left-hand-side plot depicts 
the average x translation deviations. The right-hand-side 
plot depicts the average y deviations. Within 10 iterations, 
translation deviations have shown good convergence. The 
maximum baseline error is 1.4 pixels at convergence. The 
maximum x deviation is 1.01 pixels and the maximum y 
deviation is -0.47 pixels. 

V. CONCLUSION 
Long-baseline space interferometers involving formation 

flying of multiple spacecraft hold great promise as future 
space missions for obtaining high-resolution imagery. The 
major challenge of obtaining high-quality interferometric 
synthesized images from long-baseline space 
interferometers is to control these spacecraft and their 
optics payloads in the specified configuration accurately. In 
this paper, we describe our effort toward fme control of 
long-baseline space interferometers without resorting to 
additional sensing equipment. We present an estimation 
procedure that effectively extracts relative x/y translational 
exit pupil aperture deviations from the raw interferometric 
image. The proposed estimation procedure was tested 
under different types of mirror deviations and it shows that 
the baseline estimation errors are no larger than 2 pixels of 
the raw image in most scenarios. In order to provide control 
with 5 degrees of freedom, we are evaluating phase 
diversity methods [I l l ,  [I21 to estimate tip, tilt and piston 
deviations. Iteratively running the x/y translation estimation 
and the phase diversity method is very likely to improve the 
estimation of aperture deviations. Our x/y translational 
estimation results can be used to estimate the mask 
functions, which are used in the phase diversity estimation. 
Since the phase diversity method provides an estimate of 
the source image, a better MTF estimate can be obtained 
and in turn be used to estimate x/y translational deviations. 
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